Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available November 1, 2026
- 
            Free, publicly-accessible full text available November 1, 2026
- 
            Free, publicly-accessible full text available October 1, 2026
- 
            Free, publicly-accessible full text available June 27, 2026
- 
            Free, publicly-accessible full text available December 5, 2025
- 
            Free, publicly-accessible full text available November 1, 2025
- 
            Here we present results of gas selectivity and diffusion of different gases (C2H6, C2H4, C3H8, C3H6, H2, N2, CO2, and CH4) in porous organic cages (POCs) incorporated into fluorinated copolyimides polymers (FCPs). The FCPs were synthesized by the thermal and chemical imidization reaction of fluorinated dianhydrides, nonfluorinated dianhydride, and nonfluorinated diamine. Asymmetric hollow fiber membranes formed by the dry-jet/wet-quench spinning process. Once fresh FCP fibers were synthesized, they were crosslinked with POCs, vacuum dried at 90 °C. We investigated the uptake, gas selectivity and diffusion of different gases (C3H8, C3H6, CO2, and H2) over synthesized POC-mixed matrixed membranes (POC-MMM) at 25 °C and pressures up to 1 bar. At 1 bar and 25 °C, C3H8, C3H6 adsorption capacities reached 2.77 and 2.65 mmol/g over POC-MMM, respectively, while CO2, CH4, CO, N2 and H2 adsorption capacities of 1.48, 0.84, 0.33, 0.11, and 0.068 mmol/g, respectively. Furthermore, stable CMS membrane was formed by pyrolysis of POC-MMMs under an inert argon atmosphere at 1 atm. To test the gas transport properties of CMS-derived POC/MMM, a lab-scale hollow fiber module with two-five fibers was constructed. The results of longer-term operation of synthesized CMS membrane that was continuously operated for 264 h (10 days) with an equimolar binary H2/CO2, CH4/CO2 and C3H6/C3H8 feed at 25°C and 1 bar feed pressure. The modification yielded promising results in the reduction of physical aging of CMS membranes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available